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Summary

A unified theory of basic contrasts of a block design is presented and, in relation to
it, the notions of orthogonal block structure and of general balance are recalled. Under
the randomization model it is shown that these two notions are applicable to proper
block designs only. In particular the role of the basic contrasts in defining the general
balance of a block design is indicated, and the practical meaning of the balance with
respect to these contrasts is discussed.

1. Introduction

The concept of basic contrasts has been introduced by Pearce, Califiski and
Marshall (1974) and again reported in the book by Pearce (1983, Section 3.6).
Meanwhile the concept of general balance, originating from the work of Nelder
(1965a, b), has been formalized by Houtman and Speed (1983). The latter authors
have recognized an important relation between the basic contrasts and the notion
of general balance (Houtman and Speed, 1983, p.1072). The purpose of this paper
Is to present a unified theory of the basic contrasts of a block design and to show
how it is related to the notion of general balance of the design. This will be done
with reference to the randomization model recently recalled and examined for
block experiments by Califiski and Kageyama (1991).

The randomization model is restated in Section 2 and the concept of basic
contrasts is recalled in Section 3, together with their intra-block analysis. Further
results concerning basic contrasts are confined here to proper block designs (of
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equal block sizes). This is due to the fact that only for these designs the notions
of orthogonal block structure (Section 4) and of general balance (Section 5) are
applicable under the randomization model. Examples illustrating the meaning
of general balance are given in Section 5 and relevant remarks in Section 6.

The notation in this paper will be as that used by Calinski and Kageyama
(1991), unless otherwise stated.

2. The randomization model and its submodels

Suppose that units of a block experiment are randomized before entering the
experiment in the way described by Nelder (1954), by randomly permuting blocks
within a total area of them and by randomly permuting units within the blocks.
Then, assuming the usual unit-treatment additivity, and also assuming, as usual,
that the technical errors are uncorrelated, with zero expectation and a constant
variance, independent of the treatments in particular, the model of the variables
observed on the n units actually used in the experiment can be written in matrix
notation as

y=AT+Df+n+e, 2.1)

where y is a column vector of n observed variables, A’ is an nxv design matrix
for treatments, v being the number of treatments compared in the experiment,
and D’ is an nxb design matrix for blocks, b being the number of blocks used in
the experiment, and where, accordingly, © is a vector of treatment parameters
{ti}, B is a vector of block random effects {B;}, m is a vector of unit errors Mgy
and e is a vector of technical errors {eig> () denoting the unit / in block j. The

expectation vector and the dispersion matrix (covariance matrix) derived for the
model (2.1) from the assumptions and the randomizations involved are

E(y) = A" 2.2)

and
Cov(y) = (D'D - N3'1,1)) o + (I, - KD'D)o? + 1,062, 2.3)

respectively, where 1, is an nx1 vector of units and I,, is an identity matrix of
order n, Ny is the potential number of blocks from which b have been randomly
chosen for the experiment (b<Ny), K}, is a weighted harmonic average of the

potential (available) numbers of units within the blocks, from which units in
numbers {kj} have been chosen for the experiment after the randomization, and

where the variance components are defined according to the relations
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Ng(Ng-1)o3  if j=' ,
Cov(Ry, Bk oot prall ! s <14
-Ngogp if j=' ,

and

Ki(Ky-1)of,  if j=j' and I=l' ,
Cov(nyy) » Mgy = -Kzlod  if j=' and I=l
0 if je=j" .
(For detailed derivations see Calinski and Kageyama, 1988.)

As shown by Califiski and Kageyama (1991, Section 2.2), under the model
(2.1) the best linear unbiased estimators (BLUEs) of linear treatment parametric
functions exist in very restrictive circumstances only. More precisely, for a
function ¢t = s'r’t, where r® = AA’, the BLUE exists if and only if the vector s
is related to the incidence matrix N = AD’ of the design by the condition (a)
N's = 0 or (b) N's = 0 with the elements of N's all equal if the design is connected,
and equal within any connected subdesign otherwise.

If the above conditions are not satisfied for parametric functions of interest
then the usual procedure is to resolve the model (2.1) into three submodels (two
for contrasts), in accordance with the stratification of the experimental units.
This can be represented by the decomposition

Yy=y1+Yy2+Y¥3, (2.4)

resulting from orthogonal projections of y on subspaces related to the three
"strata":

1st — of units within blocks, the "intra-block" stratum,

2nd — of blocks within the total area, the "inter-block" stratum,

3rd — of the total area
(using the terminology of Pearce, 1983, p.109). Explicitly (see Calinski and
Kageyama, 1991, Section 3),

Yi=91Y, Yo=@y and y3=gqgy , 2.5)

where the projectors ¢, , o =1,2,3, are defined, with k™ = (DD’)"1 , as
¢=1-Dk®D, ¢,=Dk®D-rn"1,1/,, and @z=n"'1,1,.
They satisfy the conditions

Poa=Pu PuPo=Po> PuPyr=0 for a=a', @ +@+@3=L,, (2.6)

also

¢D'=0 and ¢,1,=0 for a=1,2. 2.7
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The submodels (2.5), called "intra-block", "inter-block" and "total-area", re-
spectively, have the following properties:

E(yy) = A"t , Cov(y,) = ‘1’1(0%1 + 062) : 2.8)
E(Yz) ‘«PzA T COV(Yz) ‘PzD D‘P:z(OB Uu) itz ‘Pz(OU ar (0 ) ’ (2.9)
E(ys) = @At , Cov(ys) = @al(n ' k'k - N5'n)ok + (1 - K,'n"'K'k) 0%, + 071, (2.10)

where k=N'1, is the vector of block sizes of the design. Evidently, if the block
sizes are all equal, i.e. the design is proper, then the dispersion matrices of the
inter-block and total-area submodels are simplified. However, the properties of
the intra-block submodel remain the same, whether the design is proper or not.
This means that the intra-block analysis (as that based on the intra-block
submodel) can be considered generally, for any block design.

3. Basic contrasts and their intra-block analysis

In Section 4 of the paper by Califski and Kageyama (1991) it has been shown
that certain contrasts of treatment parameters play a special role in the analysis
of block designs. A relation between the design and these contrasts is given in
terms of eigenvectors and corresponding eigenvalues of the C-matrix
(C = Ag,A’) of the design with respect to r°, the diagonal matrix of treatment
replications. The eigenvectors represent the contrasts, and the eigenvalues ex-
press the efficiency factors of the design for the intra-block estimation of the
contrasts. Thus, to each block design there corresponds a set of contrasts, not
necessarily unique, for which the efficiencies of estimation in the intra-block
analysis are readily defined. This relation was originally noticed by Jones (1959).
Algebraically, this characterization is supplied by the spectral decomposition

h

d d
C=r'(3 esspr’,
=1

where {¢;} are the eigenvalues and {s;} are the corresponding r’-orthonormal
eigenvectors of C, with respect to r°, and where A = rank(C). Contrasts repre-
sented by the vectors {s;} have been termed by Pearce et al. (1974) as follows.
Definition 3.1. For any block design, contrasts {c.t = s;-ra'c , 1=1,2,..5,v-1} are
said to be basic contrasts of the design if the vectors {s;} are r’-orthonormal
eigenvectors of the matrix C = Ag;A’ = r’ - Nk N’ of the design with respect to

r’.



17

Note that the eigenvalues {¢;} of C with respect to r® are then the efficiency
factors of the design for estimating the corresponding basic contrasts in the
intra-block analysis. In this section, when the term "efficiency factor for a con-
trast" is used, it should be understood as the efficiency factor of the design for
estimating the contrast in the intra-block analysis.

The following results give sense to the term "basic" used in Definition 3.1.

Theorem 3.1. Let {c;t = sgrat , 1=1,2,...,u~-1} be any set of basic contrasts of a
block design and let {g;, i=1,2,...,u0-1} be the corresponding efficiency factors.
Then

(i) the intra-block analysis provides the BLUEs, of the form

(Cinwa = &'81Q = 7er™Q (Q=Apy) @D

with the variances
Varl(©/ueal = 61’07 (o} = 0f+ o) (3.2)

and the covariances
Covl(€ithintrar (€ Dinirad =0 (ii), 3.3)

for those of the basic contrasts for which the efficiency factors are nonzero
(positive), and

(i1) there are no BLUEs in the intra-block analysis for those basic contrasts
for which the efficiency factors are zero.

Proof. Part (i) follows from Theorem 4.1 of Califski and Kageyama (1991),
formulae (3.1) and (3.2) following from (4.8) and (4.9) there, respectively, while
(3.3) follows from the formula

Cov(Q,) =Aq,A'c? , (3.4)

holding on account of (2.8), and from the fact that s!Ag;A’s; = 0 if i=i’, due to the
properties of {s;} given in Definition 3.1. Part (ii) is obvious, as Ag;A’s = 0 implies
that s'Q; = 0. d

Theorem 3.2. For any block design for which the vectors sy, s,,...,s), represent

basic contrasts receiving nonzero (positive) efficiency factors, a set of contrasts
U't obtains the BLUEs in the intra-block analysis if and only if the matrix U

can be written as U = r*SA, where S=[s;:8,: ... : 5], and A = [a;:ay:...:a,]
is some matrix of h rows. If U is such, then the BLUEs provided by the intra-block
analysis are of the form
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h

(U/T)intra = AlS_ﬁS’Ql 5 2 8;laingl (Ql 5 Aq)lY) (35)
i=1

and their dispersion matrix is of the form
" h
Covi(U't)iyal = A6 A0t = ¥ 'aaj 0] (o}=cf+0?), (3.6
i=1
where &° = diag[eq, € ,..., €,] and £d= (sa)"l.

Proof. On account of Theorem 3.1 of Califski and Kageyama (1991), the
intra-block analysis provides the BLUEs for U't if and only if the columns of the
matrix U are linear combinations of the matrix Ag,A’, i.e. if and only if there is

a matrix A* such that U = Ap;A’A*. But, since

C=AgA’ =r’S:’Sr?, (3.7
the condition for U can be written as

U = r’Se®S'r’A” = ¥’ SA

b

with A = £°S'r’A”. On the other hand, if U = r®SA, then one can write
U =r’Se’S'r’Se®A  (since S'r’S = L)
=A@, A'A” , with A®=S:PA.

This proves the first part of the theorem. To prove the second, note that since
U = Ag,A'SeA, the functions A'sS'Ay, =A'e®S'Q, are, again on account of
Theorem 3.1 of Califiski and Kageyama (1991), the BLUEs of the contrasts U'x.
(That these are contrasts follows from the equality 1) Ag, = 0.) Thus, (3.5) is
established, while (3.6) follows from (3.4)-and (3.7). O

Corollary 3.1. For any block design for which the vectors sy, s, ,..., S, represent
basic contrasts receiving the unit efficiency factors, a set of contrasts
U'jt = A'(S'or’t, where S = [s: Sy: ... :8,]and Ag = [a;: ay: ... : a ] is some matrix
of p rows, obtains the BLUEs under the overall model (2.1), in the form

3 p
ot =A[SHAy = 2 asAy, (3.8)
i=1

with the dispersion matrix
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N P
Cov(Uyt) = AjAgof = ¥ aaio]  (of=op+0?) . (3.9)
j i=1

Proof. This result follows from Theorem 3.2 above and Corollary 2.1(a) of
Calinski and Kageyama (1991).

Remark 3.1. (a) In the notation of Corollary 8.1, a block design for which
p=1 can be called orthogonal for the set of contrasts Ujyt = A, S,r’t.

(b) 1t follows from Theorem 3.2 and Corollary 3.1 that the efficiency factor of

a block design for a contrast u't = a’S'r’t estimated in the intra-block analysis
is of the form

A
e[(u't) ] =a'al a'sa

(see also Calinski, Ceranka and Mejza, 1980, p.60).

From the results presented above , it follows that three miain subsets of basic
contrasts can be distinguished. The first contains contrasts represented by eigen-
vectors sy, Sy, ... , 8, corresponding to eigenvalues equal to 1. They all are esti-
mated with full efficiency in the intra-block analysis, their BLUEs under the
intra-block submodel being simultaneously the BLUEs under the overall model
(2.1). The second subset is that of contrasts represented by eigenvectors

Sp+15-+-5 3, corresponding to positive eigenvalues less than 1 (in nonincreasing
order). For all of them the intra-block analysis provides the BLUEs with effi-
ciencies less than 1, due to partially confounding the contrasts with blocks.
Finally, the third subset contains contrasts represented by s;,1,..., s,; corre- -
sponding to eigenvalues equal to 0. The intra-block analysis provides BLUEs for
none of them, due to totally confounding these contrasts with blocks. In a
connected design the last subset is empty.

As to the second subset of basic contrasts, it might be worth noting that
although the h-p efficiency factors for contrasts belonging to this subset may all
be different, the number of their distinct values will usually be smaller than
h-p. This gives rise to the following notation.

The spectral decomposition (8.7) can be written in the form

m~-1

C=AgA =x" Y gHp', (3.10)
p=0
where
Pp
Hp =y sp80;,

J=1
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Sp1> Sp2s s Spp, being r’-orthonormal eigenvectors of C with respect to r°, corre-

sponding to a common eigenvalue gg of multiplicity py (with pg=p), and where
m-1 is the number of distinct, less than 1, nonzero (positive) eigenvalues of C
with respect to r°.

With regard to (8.10) the following result is useful.

Corollary 3.2. Let a subset of basic contrasts of a block design be represented
by the eigenvectors Sp1> Sp2s--+» Spp, of C with respect to r® corresponding to a

common eigenvalue ¢;>0. Then for a set of contrasts Upt = Ai;SErat, where
Sg = [sp1: spa: ... : Sﬁp,,] and Ag is some matrix of py rows, the intra-block analysis
provides the BLUESs of the form '

UpDinia = €5 ASIQ » 3.11)

with the dispersion matrix of the form
Covl(UpDinral = €5 ApAgo; (o= 03+0), (3.12)

eg being the common efficiency factor of the design for all contrasts in the set,
B =0,1,2,..,m—1.

Proof. This result follows immediately from Theorem 3.2 and Remark 3.1(b).0

Formulae (3.11) and (3.12) of Corollary 3.2 show that the intra-block estima-
tion of contrasts belonging to a subspace spanned by basic contrasts for which
the design gives the same efficiency factor is very simple, and that also the
structure of the resulting covariance matrix of the obtained BLUEs is simple,
everything being controlled by the common efficiency factor. Thus, if the ex-
perimental problem has its reflection in distinguishing certain subsets of con-
trasts, ordered according to their importance, the experiment should be designed
in such a way that all members of a specified subset receive a common efficiency
factor, of the higher value the more important the contrasts of the subset are. If
possible, the design should allow to estimate the most important subset of
contrasts with full efficiency (i.e. of value 1).

In addition to Corollary 3.2 it may be noted that due to the decomposition

(3.10), a possible g-inverse of the matrix C, i.e. a possible choice of C~, is

m-1

-1
2 eg H .
=0

This implies that the intra-block treatment sum of squares (see Califski and
Kageyama, 1991, p.108) can be decomposed in the form
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m-1
QCQ = 2 e QHQ; ,
B=0
the Bth component, with pg d.f., being related to the fth subset of basic contrasts,
for which the common efficiency factor is &g (see also Pearce, 1983, p. 75).

All the discussion on basic contrasts conducted till now concerns the estima-
tion within the first stratum, i.e. intra-block, only. This confinement in presenting
the theory may be necessary if a general block design, possibly nonproper, is
under consideration. In such a general case, as indicated in Section 4 of Califski
and Kageyama (1991), an eigenvalue 1-¢ appearing in the inter-block estimation
of a contrast may fail in getting a clear interpretation as the efficiency factor in
that stratum. It will be shown in the next section that only proper designs induce
a block structure which ensures that also the estimation in the inter-block
stratum becomes simple.

4. Proper block designs and the orthogonal block
structure

As noticed in Section 2, for proper designs some advantageous simplifications
occur. These are essential with regard to the inter-block submodel , for which
the structure of the covariance matrix, shown in (2.9), is not very satisfactory
from the application point of view. In general it obtains a simple form for the

extreme case of Ky03 = 0% only, i.e., when the grouping of units into blocks is
not successful (see definitions of 012;, _0%] and Ky in Section 2.1 of Califiski and
Kageyama, 1991). However, if the design is proper, then Cov(y,) gets a mana-
geable form. Therefore, further development of the theory related to the model

(2.1), with the properties (2.2) and (2.3), will be confined here to proper designs,
i.e. designs with

ki=ko=...=ky =k (say). 4.1)

This will allow the theory to be presented in a unified form.

It can easily be shown that the dispersion matrices in (2.9) and (2.10) are
simplified to

Cov(y,) = @olkaf + (1-Kik) ofy + of] 4.2)
and

Cov(ys) = @l(1-Npib) ko + (1-K;lk) o + 621 , 4.3)
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respectively, for any proper block design. Thus, in case of a proper block design
the expectation vector and the dispersion matrix for each of the three submodels
(2.5) can be written, respectively, as

E(Ya) = (paA T (4.4)

and

Cov(y,) = 9,02 , 4.5)

for a = 1,2,3, where, from (2.8), (4.2) and (4.3), the so-called "stratum variances"
are

2 2

of=05+02, oi= kol + (1-K7'k) 0% + o2

e

and g
o5 = (1-N3'b) ko? + (1-Kjtk) o2 + o2 .

Furthermore, if Np = b and k = Kj; (the latter implying the equality of all potential
block sizes), which can be considered as the most common case, the variances

0% and 0% reduce to

o3 =kok+02 and oi=0>.

On the other hand, under the decomposition (2.4),

3

Cov(y) = 3 Cov(yy) + 33 Covy,,v)
a=1

a=a’

where the covariance matrix of the vectors y, and y, has the form

COV(wa(x') & q)ucov(y)(pa’
It can easily be checked that, under (4.1),

P.Cov(y)g, =0 @.7

for any a=a’. [In fact, the assumption (4.1) is necessary for the pair a=2, a'=3
only.] Thus, for any proper design, the decomposition (2.4) implies not only that

E(y) = E(yy) + E(y2) + E(y3) = /AT + AT + @A’
but also that

Cov(y) = Cov(y;) + Cov(y,) + Cov(ys) = 9,07 + 905 + 9y02,  (4.8)
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where the matrices ¢;, ¢, and @; satisfy the conditions (2.8).

The representation (4.8) is a very desirable property, as originally indicated
for a more general class of designs by Nelder (1965a). After him, the following
definition will be adopted (see also Houtman and Speed, 1983, Section 2.2).

Definition 4.1. An experiment is said to have the orthogonal block structure
(OBS) if the dispersion matrix of the random variables observed on the ex-
perimental units (plots) has a representation of the form (4.8), where the matrices
{9} are symmetric, idempotent and pairwise orthogonal summing up to the
identity matrix, as in (2.6).

It can now be said that any experiment in a proper block design has the
orthogonal block structure, or that it has the OBS property. A natural question,
arising immediately, is whether the proper designs are the only block designs
inducing the OBS property. The answer is as follows.

Lemma 4.1. An experiment in a block design has under (2.1) the orthogonal
block structure if and only if the design is proper.

Proof. Since, from (2.3), (2.6) and (2.7), in general
PCov(y)p, =0 for =23,

the representation (4.8) holds if and only if
P2Cov(y)ps = n (D'kl),~ n”'k'k1,1,)(0F - Kifob) =0 .

But D'kl,=n"'Kk'k1,1, if and only if k=(k'k/n)l,, i.e., if and only if (4.1)
holds. |

The condition (4.1) is, however, not sufficient to obtain for any s the BLUE
of s'r®r under the overall model (2.1). For this, the design needs to be not only
proper but also orthogonal, i.e. such that the condition 2 'NN'r°N = N holds.
Moreover, if the design is connected, this would mean that it has to satisfy the
condition N = 67 1r1’ (see Remark 2.1 of Califiski and Kageyama, 1991). Thus, if
a design is proper but not orthogonal, there is no hope of obtaining the BLUEs

for all parametric functions of the types 'r’t = ¢'t under the model (2.1). It remains
then to seek the estimators within each stratum separately, i.e. under the
submodels

Yo = Puy > a=1,2,3, (4.9)

which for any proper design have the properties (4.4) and (4.5), with the matrices
@; and ¢, reduced to

¢ =1, -£"'DD (4.10)
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and
¢:=k'DD-nl11, 4.11)

respectively, and with @z = n7'1,1/, as defined in Section 2.

Theorem 4.1. If the block design is proper, then under (4.9) a function
W'y, = W@,y is uniformly the BLUE of ¢'t if and only if p,w = @,A’s, where the
vectors ¢ and s are in the relation ¢ = Ag,A’s.

Proof. The proof is exactly as that of Theorem 8.1 of Califiski and Kageyama
(1991), on account of (4.4) and (4.5). |

Remark 4.1. Since 1A, =0 for o = 1,2, the only parametric functions for
which the BLUEs may exist under (4.9) with o = 1,2 are contrasts. On the other
hand, since AgsA's = n"l(r’s)r for any s, no contrast will obtain a BLUE under
(4.9) for o = 3. In fact, a function for which the BLUE exists within the 3rd
stratum is ¢'t = (s'r)n"lr'v, i.e. the overall total or any function proportional to

that, the overall mean rn”'r't in particular. [See Remark 3.1, Corollary 3.1(b) and

Remark 3.6(a) of Califski and Kageyama (1991).]

It follows from Theorem 3.5.1 that if for a given ¢ (=0) there exists a vector s
such that ¢ = Ap,A's, then the BLUE of ¢'t in stratum o is obtainable as

c't=sAy,, ; (4.12)
with the variance of the form
Var(cl’\t) = s'ApA'sc? = ¢'(Ap A')c o2 (4.13)

where oi is the appropriate stratum variance defined in (4.6), and (Ag,A’)” is any
g-inverse of Ap,A’. _
Explicitly, the matrices Ag,A’ in (4.13) are:

A@A' =1’ - k'NN’ = C (the C-matrix), (4.14)
ApA' = E'NN' - n”ler' = C, (Cgin Pearce, 1983, p.111)  (4.15)
and
A@A’ = nlry

Now, returning to the decomposition (2.4), it implies that any function s'Ay,

estimating unbiasedly the parametric function s'r’t = ¢'t, can be resolved into
three components, in the form
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s'Ay =s'Q; +8'Qy +8'Qj3, (4.16)

where Q, = Ay, = Ap,y (a0 = 1,2,3), i.e., each of the components is a contribution
to the estimate from a different stratum.

As stated in Remark 4.1, the only parametric functions for which the BLUEs
exist under the submodels y; = ¢,y and y, = g,y are contrasts. As will be shown,
certain contrasts may admit the BLUEs exclusively under one of these submod-
els, i.e. either in the intra-block analysis (within the 1st stratum) or in the
inter-block analysis (within the 2nd stratum). For other contrasts the BLUEs
may be obtained under both of these submodels, i.e. in both of the analyses.

It has been indicated in Lemma 4.1 of Califski and Kageyama (1991), that a
necessary and sufficient condition for the intra-block and inter-block components
to estimate the same contrast ¢'t = s'r’t (with the accuracy to a constant factor)
is that s is an eigenvector of C = Ag;A’ with respect to r’. This, in particular,
remains true for the components s'Q, = s'Ay, and s'Q, = s'Ay, of the resolution

(4.16) in case of a proper design. So the necessary and sufficient condition for
E(s'Q;) = kE(s'Q,), when s'r = 0, is

A@A’s = ex’s , with O<e<1 (e = 7 'i ol 4.17)

or its equivalent
AgoA’s = (1-¢)r’s , with O<e<1 . (4.18)

Note that the equivalence of (4.17) and (4.18) holds for any block design,
whether proper or not, with any ¢, provided that s'r = 0.

Comparing (4.17) and (4.18) with the condition of Theorem 4.1, one can write
the following.

Lemma 4.2. If the design is proper, then for any ¢ = rs such that s satisfies
the equivalent eigenvector conditions (4.17) and (4.18), with O<e<1, the BLUE of
the contrast c¢'t is obtainable in both of the analyses, in the intra-block analysis
and in the inter-block analysis.

Proof. On account of Theorem 4.1, if (4.17) is satisfied, then from
E(s'Q,) = s'’Ag At the function ¢'s'Q; is upder y, = @,y the BLUE of ¢'t = s'r’t.
Similarly, if (4.18) is satisfied, then from E(s'Qy) =s'Ag,A't the function
(l—e)_ls’Qz is under y; = gyy the BLUE of c¢'t = s'rt. Since 1) Ag; = 0’ = 1,Aq,
it is easy to check that if any of the two conditions (4.17) and (4.18) holds with
0<e<1 so does the other, any of them implying also the equality /c =r's =0. [
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It should, however, be notiged that since in general the inequality 0O<e<1 holds,
the cases not considered in Lemma 4.2 are those of ¢=0 and e=1. To these cases
the following result applies.

Lemma 4.3. If the design is proper, then for any ¢ = r’s such that s satisfies
one of the eigenvector conditions

ApAs=rs, a=123, (4.19)

the BLUE of the function ¢'t is obtainable under the overall model (2.1).

Proof. In case of a proper design the condition for a function s'Ay to be, under
(2.1), uniformly the BLUE of E(s’Ay) = s'r’t = ¢'t can be written as

N’s = k" 'N'r°NN's (4.20)

(see Calinski and Kageyama, 1991, Theorem 2.1). For a=1 the condition (4.19)
holds if and only of NN's = 0, i.e. if and only if N's = 0, and if the latter holds,
(4.20) holds automatically. For a=2 the condition (4.19), implying r's = 0, holds

if and only if k‘lNN 's = ras, and the latter implies (4.20). For 0=3 it can easily
be checked that the condition (4.19) is satisfied if and only if s € C(1,), i.e., when
s is proportional to the vector 1,, and for such s the equality (4.20) holds
automatically. Thus, any of the three conditions (4.19), for o = 1,2 and 3, implies
(4.20). a

Now a general result can be given.

Theorem 4.2. In case of a proper design, for any vector ¢ = r’s such that s
satisfies the eigenvector condition

AQA's =£,xs , with O<e,<l (a0 =1,2,3), (4.21)

where g;=¢, g9=1-¢, ¢3=1, the BLUE of the function ¢’t is obtainable in the

analysis within stratum o [for which (4.21) is satisfied], i.e. under the submodel
Yo = 9.Y, Where it gets the form

A
(€t), =¢;'8'Q, = eerQ,, (4.22)
and its variance is

o 2 1

Var[(c't),] = egls’r S50 ="es c’r‘aco(zx : (4.23)

If (4.21) is satisfied with O<g,<1, then two BLUEs of ¢t are obtainable, one under
the submodel y; = ¢;y and another under Vo = @oy. If (4.21) is satisfied with
€,=1, then the unique BLUE is obtainable within stratum o only, being simul-
taneously the BLUE under the overall model (2.1).
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Proof. The existence of the BLUEs follows from Lemma 4.2 for o = 1,2 with
0O<e,<1, and from Lemma 4.3 for o = 1,2 with ¢,=1 and for a=3, where ¢,=1 in

any case. Formulae (4.22) and (4.23) follow from the definitions of Q, in (4.16)
and from the properties (4.4) and (4.5), considered in view of (4.21). |

Remark 4.2. For a=1, i.e. for the intra-block analysis, Theorem 4.2 applies to
proper as well as to non-proper block designs, as can be seen from Theorem 4.1
of Calinski and Kageyama (1991).

Remark 4.3. Formula (4.23) shows that the variance of the BLUE of ¢t
obtainable within stratum o is the smaller the larger is the coefficient ¢, the
minimum variance being attained when ¢ =1, i.e., when (4.22) is the BLUE under
the overall model (2.1). Thus, for any proper design, ¢, can be interpreted as the
efficiency factor of the analysed design for the function ¢t when it is estimated
in the analysis within stratum o. On the other hand, 1-¢, can be regarded as

the relative loss of information incurred when estimating ¢’t in the within
stratum o analysis.

Remark 4.4. Since E(¢;'s'Q,) = s'r’ if and only if (4.21) holds, for a function

¢'t = s'r’ to obtain the BLUE within stratum o in the form (4.22), the condition
(4.21) is not only sufficient but also necessary.

5. Basic contrasts and the notion of general balance

It has been shown in Section 4 that the eigenvector condition (4.17) implies
and is implied by a dual condition (4.18) which in a proper design offers the same
kind of simplicity to the inter-block BLUE of the related contrast as the former
condition does to the intra-block BLUE of the contrast (Theorem 4.2). This shows
that in the case of a proper block design the property determining basic contrasts
of the design has its desirable effect not only on the estimation in the intra-block
analysis but also on that in the inter-block analysis. Thus, the results presented
in Section 3 can now be suitably extended to cover the inter-block analysis as
well, provided that the attention is confined to proper designs only.

First, the following can be noted.

Remark 5.1. The efficiency factor ¢, in Theorem 4.2 attains the maximum
value 1 for a=1 if and only if N's =0, and for o = 2 if and only if N’s = 0 but
@;A’s = 0. On the other hand, a block design is called orthogonal if ¢,Ar N = 0,
ie., if

v-1

@A Y s8] N =0,
=1
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where {s;} represent basic contrasts. Thus, if the vector s representing a contrast
c't = s'r’t satisfies (4.21) with ¢, = 1 for o = 1 or a = 2, then the design can be
called orthogonal for the contrast. If a proper block design is orthogonal for ¢,

then (c't), given by (4.22), with &, = 1, is the BLUE under the overall model (2.1),
as stated in Theorem 4.2.
A relevant extension of Theorem 3.1 is the following.

Theorem 5.1. Let {c;t = s! ) 0= 1,2,...,u-1} be any set of basic contrasts of
a proper block design and let {¢;, i=1,2,...,u-1} be the corresponding eigen-

values of the matrix C with respect to r’. Then the analysis within stratum o (=
1, 2) provides the BLUESs, of the form

(cf0), = eclsiQ, = eilel 1'Q, (5.1)
with the variances
Varl(ch),] = e_lo? 5.2)
and the covariances
Covi(eh)y, (Cht) ] =0 (i), (5.3)

for those of the basic contrasts for which the efficiency factors in stratum
o, €, =¢ if @ =1 and g,;=1-¢ if o = 2, are nonzero (positive). Also the

A A
correlations between (¢! 1), and (¢;t), are zero for o = o/, whether i = ' or i = i’.

Proof. On account of Theorem 4.2, formulae (5.1) and (5.2) follow immediately
from (4.22) and (4.28), respectively, while (5.3) follows from the formula

Cov(Q,) = Ag,A'c? (5.4)

holding due to (4.5), and from the equality s/Ag A's; = 0, satisfied by any pair of
vectors s;, s; (i=1) in accordance with Definition 8.1 and the equivalence be-

tween (4.17) and (4.18). The last statement of the theorem follows from 4.7),
from which the vectors Q; and Q, are uncorrelated. a

Next, an extension of Theorem 3.2 is possible.

Theorem 5.2. For any proper block design let the vectors
S15--58p 841505 Sy Spypse.., 8,1 Tepresent basic contrasts ordered as in Section
3. Then a set of contrasts U't admits the BLUEs in the analysis within stratum
a (=1,2) if and only if the matrix U can be written as U = ras(a)A(a), where
Sy =I[s1:...:s;,] and Ay =[ay;:...:a;;] is some matrix of A rows, while
S)=I[8p41: ... :8,_1] and Ag =l[agp, : ... 1 ay, ] is some matrix of v—p-1 rows.
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If U is such, then the BLUEs provided by the analysis within stratum o are of
the form

(U, = Ay SiafR (5.5)
and their dispersion matrix is of the form
Cov[(U't)o] = Ay e Ao (5.6)
where 8?1) = diag[ey, ... , €,] and 5?2) = diag[l-¢,,;, ... , 1-¢,4].

Proof. The proof follows the same pattern as that of Theorem 3.2, now on
account of Theorem 4.1. It is useful to note that the matrix Ag,A’ can be written

as
Ap A’ = rBS(a)S?u) Séd)r6 for a=12. (5.7

Formula (5.5) is then obtainable by writing U =A(pQA’S(u)8('2)A(a) and appl);ing
Theorem 4.1, while (5.6) results directly from (5.4) and (5.7). Q
An extension of Corollary 3.1 is the following.

Corollary 5.1. For any proper block design for which the vectors
S1, .- » S, and sy, ..., S, | represent basic contrasts, as in Theorem 5.2, the
first p receiving the unit efficiency factors in the intra-block analysis and the
last v-h-1 receiving such efficiency factors in the inter-block analysis (i.e. the
zero efficiency factors in the intra-block analysis), a set of contrasts U't admits
the BLUEs under the overall model (2.1) if and only if the matrix U can (possibly
after reordering its columns) be written as

U=r[SA, : S,A,l, (5.8)
where Sg=[s;:...:8], S, =[s;,;:...:8,;] and Ay, A, are some matrices of
conformable numbers of rows. The BLUEs are then obtainable in the form

5 [AeSh
Ut= [A;nS;n]Ay (5.9

and their dispersion matrix in the form

’ 2
ApAjor O ] : (5.10)

Cov(U't) = [ 5 A;nAmO%

Proof. The first part of the corollary follows directly from Theorem 2.1 of
Califski and Kageyama (1991), as it can be seen when applying the singular
value decomposition
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!/
N=r"V (1-¢)"s;t’k®
i=;+1
to the condition (2.13) of that theorem, which for a proper block design becomes
then equivalent to the equality

v v
3 1
D (1-e)* tsi’s = Y (1-¢)" tsir’s,
 i=p+l i=p+1

. s : il
and this, since any s can be written as s = Z/_{'a;s; where {q;} are some scalars,

is equivalent to

v-1 v-1

3 1
N 1-e)ait; = Y (1-¢) at; ,
i=p+1 i=p+1

which in turn holds if and only if ¢; is either 0 or 1 for any i for which a; = 0. The

second-part of the corollary can be drawn from Theorem 5.2, but it follows also
directly from Theorem 2.1 of Califiski and Kageyama (1991) and formula (4.8),
in view of (5.8). 4

Also Remark 8.1 has its extension.

Remark 5.2.(a) In the notation of Corollary 5.1, a proper block design for
which pz1 and/or v-hz2 can be called orthogonal for the set of contrasts

Ut=[SeA, : S,A,Ir.

(b) 1t follows from Theorem 5.2 and Corollary 5.1 that the efficiency factor of
a proper block design for a contrast u't =a/,S,r’t estimated in the stratum o
analysis is of the form

el(u't),] = ajyyay,/ a'(a)e(';’) a, (ax=12).

At this point it will be useful to notice that when multiplicities of the eigen-

values of C with respect to r° are taken into account, then appropriate spectral
decomposition can be given not only for the matrix C, as in (3.10), but also for
the matrix C, defined in (4.15). It can be written as

m

Cy=ApA =" ¥ (1-e)Hpr", (5.11)
p=1

where H,,...,H,,_; are as in (3.10), and
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P v-1-h
! !
Hm T 2 SpSmj= E Sh4/Sh4j 5
J=1 J=1

with s,,; =8, forj =12,..., p,, = v-1-h, and where ¢,, = 0.

Now, the following extension of Corollary 8.2 can be given

Corollary 5.2. Let a subset of basic contrasts of a proper block design be
represented by the eigenvectors sy, sgy,..., Sto, of C with respect to r® correspond-
ing to a common eigenvalue g (not necessarily positive). Then for a set of
contrasts Uét = A'B i;ré'c, where SB = [sm gy ol sBPp] and AB is some matrix

of pg rows, the stratum a (=1,2) analysis provides the BLUEs of the form

(UEST)(I = ec_xﬁ Ah IBQQ D (512)

with the dispersion matrix of the form
Cov[(Upv),] = epApA0L, (5.13)

provided that ¢,,>0, & = ¢; being the common efficiency factor of the design for
the contrasts in the intra-block analysis and g9 = 1-gp being such factor for the
contrasts in the inter-block analysis.

Proof. This result follows immediately from Theorem 5.2 and Remark 5.2(b).

(.
For completeness, it should also be noticed that, in the spirit of Remark 5.1,
one can say that any block design is orthogonal for a function of the type
c't = as, rt, where a is a nonzero scalar and S, = n_l/zlu. Furthermore, also the
matrix A@sA’ appearing in Theorem 4.2 can formally be written in its "spectral
decomposition", as

ApA' =r’ssir®  (=n"lrr'). (5.14)

The three representations (3.10), (5.10) and (5.14), together with the generél
results established in the present section for proper block designs, give rise to
the following concept of balance.

Definition 5.1. A proper block design inducing the OBS property defined by
{p,} is said to be generally balanced (GB) with respect to a decomposition
C(A") = ®,C(A'Sp) (5.15)

(the symbol C(-) denoting the column space of a matrix argument and ®; denoting
the direct sum of the subspaces taken over ), if there exist scalars {eqp} such
that for all o (=1,2,3)
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A =Y &g r’Hyr® (5.16)
B

[the sum being taken over all § that appear in (5.15),p = 0, 1, ..., m, m+1], where
Hp = S;Sg, H,,,; = s,s,, and where the matrices {Sy} are such that

Six’Sp =1, for any p and Sir’Sy =0 for p=p’.

It can easily be shown that Definition 5.1 is equivalent to the definition of GB
given by Houtman and Speed (1983, Section 4.1) when applied to a proper block

design, and so coincides with the notion of general balance introduced by Nelder
(1965b).

The following result explains the sense of Definition 5.1, relating it to the
notion of basic contrasts and the theory established for them.

Lemma 5.1. A proper block design is GB with respect to the decomposition
(5.15) if and only if the matrices {Sg} of Definition 5.1 satisfy the conditions

AQA'S; = £,r°Sy (5.17)

for all o and B. (See also Pearce, 1983, p.110.)

Proof. The implication from (5.17) to (5.16) can be shown as for the repre-
sentations of A@,A’' given in (3.10), (5.11) and (5.14), i.e. by noting that

r? = Z’ﬁ'f(')l SgS;, with S, ,; = s,, which also implies that

m

A =AY SpSir’ + A, (5.18)
=0

The reverse implication is immediate, due to the ré-orthonormality of the columns
of {Sg}, within and between the matrices. ]

Remark 5.3. It follows from Lemma 5.1, on account of Definition 3.1, that any
proper block design is GB with respect to the decomposition

CA) =C(A'S)) ®C(A'S)) @ ... ® C(A'S,)) ®CA'S,) , (5.19)

where the matrices Sy, 8y, ... , S,, represent basic contrasts of the design, those
represented by the columns of Sj receiving in the intra-block analysis a common
efficiency factor ¢, = €5 and in the inter-block analysis a common efficiency factor
géop = 1-g¢5 , and where s, = n_l/zlu. Thus, for the estimation of contrasts in the
subspaces CA'Sp), B=0,1,...,m, Corollary 5.2, with (5.12) and (5.13), is ap-
plicable.
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To see a direct correspondence between the results presented by Houtman
and Speed (1983) and those exposed here, it has to be noted that their linear

subspace 7 coincides with the present C(A’) and their subspaces {74} coincide with

the present subspaces {C(A’Sp)}. Accordingly, their orthogonal projectors {Te}
can, in the notation of this paper, be written as

Tp=A'SgSEA = AHA .
Certainly, the equality (5.16) above can equivalently be written as

AT AQ AT A = Y e AHA
. B
which is exactly the condition of Houtman and Speed (1983, Section 4.1) in their
definition of GB.

Also, it should be mentioned that the notion of GB stems back to the early
work by Jones (1959), who called an experiment balanced for a contrast if the
latter satisfied the condition (4.17), and called it balanced for a set of contrasts
if they satisfied this condition with the same eigenvalue. Thus, in his terminology,
a block design is balanced for each basic contrast separately, but it is also
balanced for any subspace of basic contrast corresponding to a distinct eigenvalue.
It is, therefore, natural to call a block design GB for all basic contrasts, provided
that the eigenvalues can be interpreted in terms of efficiency factors and relative
losses of information on contrasts of interest. This is just what is offered by any
proper block design if adequately used.

To illustrate the origins and the sense of the concept of GB, it may be
interesting to return to one of the examples of Jones (1959, Section 8), that which
was also discussed by Calinski (1971, p.292).

Example 5.1. Consider the following 3x2 factorial experiment, with the in-
cidence matrix

Treatment at Block
level of level of I IT HI IV V VI
A B ol
0 0 it i e
1 0 IS e i O
2 0 O L [ R
0 1 A R R T
1 1 lyesllr AG1.3) Ooi 0l
2 1 2 adi-loQuelenlodi b afiecdy

It is a proper equireplicate connected block design with the C-matrix
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iR
C=4IS—4NN :
where

AR ORI O L3R g
2R OB S R RS
i@yl 8 8 D
= 8 -3 49 9
B 2 R R n T L )
S 8 2 2 9 4

The six basic contrasts found by Jones can be represented by the vectors

s;=[1,1,1,-1,-1-17 / V24 corresponding to ¢, = 1,

s,=[1,-1,0,1,-1,07 / Vi6 corresponding to g9 = 15/16,
g =3l 5= 2, ASg1S - INI AVAS) corresponding to €5 = 15/16,
s;=[1,-1,0,-1,1,0] / Vi6 corresponding to g, = 13/186,
s5=[1,1,-2,-1,-1,27 / V48 corresponding to g5 = 13/ 16.

Noting that r® = 41, it can easily be checked that the vectors {s;} are r’-ortho-
normal, i.e., satisfy the conditions

5 5 . 30, Dk
sirs;=1 and six’s;=0 if =/, for i,i'=1,2,..,5,

and, furthermore, that they are eigenvectors of the matrix C with respect to r°,
i.e., satisfy the condition Cs; = ¢, for all i, which is equivalent to the condition
Ms; = a;8; of Jones (1959, p.175), with M = r °Nk°N’ and a; = 1-¢;, as well as to
the condition Mgs; = w;s; of Califiski (1971, p.281), with My=M-1,x'/n and
W; = a;, as r's; = 0 for all contrasts. Moreover, it should be noted that s, represents
the B factor contrast, s, and s; represent the A factor contrasts and s, and sj
represent the interaction contrasts. Thus, in this example, the design is ortho-
gonal for the B factor contrast, estimated in the intra-block analysis with full
efficiency, is balanced for the A factor contrasts, estimated with efficiency 15/16
in the intra-block analysis and with efficiency 1/16 in the inter-block analysis,
and is also balanced for the interaction contrasts, estimated with efficiency 13/16
and 3/16 intra-block and inter-block, respectively. Referring now to Remark 5.3,
these statements can be summarized by saying that the design is GB with respect
to the decomposition (5.19), where Sy =s;, S, = [s,, s3] and S, = [s,, s;5]. But note
that because of the meaning of the contrasts, represented by the vectors {s;}, in

terms of the treatments actually applied in the experiment, it can also be said
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that the design is GB with respect to the 3x2 factorial structure of the experimen-
tal treatments.

It is essential, when using the GB terminology, always to refer to the decom-
position (5.19) with respect to which the balance of the design holds. If the
decomposition is coherent with the treatment structure specified by the ex-
perimental problem, then the GB property makes sense. However, if the decom-
position is meaningless from the point of view of the treatment structure of the
experiment, then it may be difficult to make any practical use of that concept.
This difficulty will become apparent in the next example.

Example 5.2. Consider a 3 x 2 factorial experiment in which the same
incidence matrix as in Example 5.1 is used, but now with different application
to the experimental treatments, as follows.

Treatment at Block
level of level of I II III IV V VI
A B
0 0 10 1,,0,,1.1 ]
0 1 BRSPS ()
1 0 N = | s B (O ]!
1 1 ()T 1SS ) Ay [N, [
2 0 ity At oflbhatQnbn0 vl
2 1 fEalrisgrs g of sinjetgeas)

The C-matrix of the design remains the same, and has the same eigenvectors
{s;} with respect to r’ = 41, However, now the meaning of the basic contrasts
represented by these eigenvectors is different. The vector s, represents a contrast
between the first three treatments and the remaining ones. Such contrast is of
no interest from the point of view of the present factorial structure of the
treatments. Similarly, no other of the contrasts represented by {s;} is interesting
under the above structure of the treatments. To obtain contrasts of interest in
this experiment one has to transform the vectors {s;} by the matrix

OO OO OoOH
(=) (=) (=h [ ()
OO OOO
CIOIC ©IR ©
OO M=OOO
=HOOOOO

The vectors {s; } so obtained are
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ISERORS 0 0SS0 0

0 0 0 1 0 O
[T ST T (o
LA 0l o0 0 R 50

0 0 1 0 0 O

0 0 0 0 o0 1

=[1;—1a17_1a1’_1]’/m’

s;=[1,1,-1,-1,0,01 /V16,
8y'= ['1,1,71/1,2, 04 Vas |
sy=[1,-1,-1,1,0,0] /vi6,
g = [l =150, 1,2, 2 Va8l

They are still ¥*-orthonormal but, unlike the vectors {s;}, they are not eigenvectors

of C with respect to r® = 41 any more. Thus, the design considered in the present
example is not GB with respect to the 3 x 2 factorial structure of the experimental
treatments, as is the case in Example 5.1.

The two examples above show that in designing an experiment it is not
sufficient to choose a design suitable for the block structure. The design is then
to be properly adopted to the experimental problem, i.e., one has to assign the
design treatments to the experimental treatments in such a way that the design
becomes GB with respect to contrasts that are essential from the point of view
of the experimental questions under study. For further discussion see Pearce
(1983, Section 4.8), and for more illustrative examples see Ceranka (1983, Section
7).

6. Concluding remarks

The unified theory presented in this paper reveals the special role played by
basic contrasts in defining the general balance of a block design. Since any proper
block design is generally balanced, as stated in Remark 5.3 (see also Houtman
and Speed, 1983, Section 5.4), the notion of general balance is interesting only
from the point of view of the decomposition (5.19) with respect to which the
balance holds. Therefore, any block design offered for use in an experiment should
be evaluated with regard to that decomposition. The experimenter should be
informed on the subspaces of basic contrasts appearing in (5.15) or (5.19) and
the efficiency factors receivable by them in the intra-block and in the inter-block
analysis. This has already been pointed out by Houtman and Speed (1983,
p.1075), who write that these subspaces have to be discovered for each new design
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or class of designs. Referring directly to block designs, and to partially balanced
incomplete block designs in particular, they write (p.1082) that although it is
generally not difficult to obtain these subspaces (more precisely orthogonal
projections on them) "most writers in statistics have not taken this view point",
Corsten (1976) being an notable exception. In fact the canonical (sub)spaces
considered by Corsten (1976) are equivalent to those of the basic contrasts
considered here. It should also be mentioned, at this point, that the role of basic
contrasts (called canonical contrasts) in designing and analysing equireplicate
and equiblock-sized balanced factorial experiments was already enhanced by
Shah (1960). .

The knowledge of the basic contrasts or their subspaces for which a design is
GB, and of the efficiency factors assigned to them, allows the experimenter to
use the design for an experiment in such a way which best corresponds to the
experimental problem. In particular, it allows to implement the design so that
the contrasts considered as the most important can be estimated with the highest
efficiency in the stratum of the smallest variance, which is the intra-block
stratum if the grouping of units into blocks is performed successfully.
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Kontrasty bazowe doswiadczalnego ukladu
blokowego ze szczegélnym odniesieniem do pojecia
zréwnowazenia ogélnego

Streszczenie

W pracy przedstawiono jednolita teorig kontrastéw bazowych oraz, w powiazaniu z
nia, przypomniano pojecie ortogonalnej struktury blokowej i pojecie zréwnowazenia
ogélnego. Pokazano, ze w modelu randomizacyjnym te dwa pojecia maja zastosowanie
Jedynie do uktadéw blokowych wlasciwych, to znaczy ukladéw o blokach jednakowej
wielkosci (pojemnosci). W szczegélnosci wskazano na role, jaka odgrywaja kontrasty
bazowe w definiowaniu zréwnowazenia ogélnego. Oméwiono takze sens praktyczny
zréwnowazenia ukladu do§wiadczalnego ze wzgledu na te kontrasty.

Stowa kluczowe: Kontrasty bazowe, zréwnowazenie ogélne, analiza miedzybloko-
wa, analiza wewnatrzblokowa, ortogonalna struktura blokowa, model ran-
domizacyjny.



